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J. Phys. A:  Math. Gen. 14 (1981) 1483-1512. Printed in Great Britain 

Auxiliary sites in the RISM approximation for molecular 
fluids 

P T Cummingsf, C G Gray and D E Sullivan 
Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada 

Received 6 October 1980 

Abstract. One of the interesting features of the RISM approximation for molecular fluids is 
that the results of the theory show dependence on the presence or absence of auxiliary (i.e. 
non-interacting) sites. In this paper, this dependence is examined both analytically and 
numerically, Using graph-theoretical methods, the diagrammatic expansions for the site- 
site correlation functions are examined in great detail in order to explain the way in which 
the dependence on auxiliary sites arises in the RISM approximation. This provides 
considerable insight into the nature of the RISM approximation itself. 

1. Introduction 

Two basic approaches are currently being pursued in the theory of the structure of 
molecular fluids (Egelstaff et a1 1975, Gray and Gubbins 1980). The first approach is 
based on the angular pair correlation function g(12) = g ( r I 2 w 1 w 2 ) ,  where rI2 is the 
vector connecting the molecular centres of molecules 1 and 2, and w ,  = 0,dlxi are the 
Euler angles specifying the orientation of molecule i with respect to some axes 
(space-fixed or intermolecular). Various perturbation and integral equation approxi- 
mations for calculating g(12) have been devised (see, for example, the literature cited 
by Gray (1978a)). This approach has various advantages and disadvantages (Gray 
1978b) with respect to the one considered in this paper. 

The second approach to the structure of molecular fluids is based on the site-site pair 
correlation functions gap ( r a p )  between two sites in different molecules (Chandler and 
Andersen 1972, Gubbins et a1 1973). For the case$ that the intermolecular pair 
potential u(12) = u(r12w1w2)  can be represented as a sum of atom-atom or site-site 
terms uap ( r a p ) ,  Chandler and Andersen (1972) have developed an integral equation 
method (the reference interaction site model-RIsM) for calculating gap ( r )  approxi- 
mately. The RISM theory consists of an integral equation (see (5) below) between the 
hop ( r )  = gap ( I )  - 1 and corresponding site-site direct correlation functions cap ( I ) ,  

together with some approximate closure relation. As originally developed, and most 
often applied to date, one chooses uap to be a hard sphere potential, and takes a 
Percus-Yevick (w)-type closure for the cap (see (8b) below and ensuing discussion). 

t CSIRQ (Australia) Post-Doctoral Research Fellow. 
$For  a discussion of the various assets and liabilities of the site-site model potential, see e.g. Downs et al 
(1979). Note however that the discussion of the angular dependence of the site-site model for N 2 - A r  is 
incorrect there. We thank F Mulder for discussions of this point. 
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Thus we have 

where 

U,’ ( r )  = *, r < U,,, 

= 0 ,  r > V,P, (2) 

where r,, = lr?) - ri5)1, with rim) the position of site a in molecule i, and uap is the hard 
sphere diameter for sites a and p. This situation is depicted pictorially in figure 1. A 
‘site’ in a molecule of fused hard spheres is normally associated with the centre of one of 
the hard spheres, although this need not necessarily be so. In the RISM approximation 
the molecules are usually assumed to be rigid; hence the parameters lap = ll;,,) - l!,’)l are 
constants, where l ie)  is the vector joining the centre (Ri )  and the site cy of molecule i (cf 
figure 1). 

Figure 1. A typical RISM molecule-in this case a diatomic molecule with three sites. Site p 
is an auxiliary site. 

The RISM approximation for molecular fluids enables the approximate evaluation of 
the site-site correlation functions h,,(r, r ’ )  = hao(lr-r’1) defined in terms of g(12) as 
(Ladanyi and Chandler 1975) 

where di  is an abbreviation for K’ dRi dui,  the integration over all positions and 
orientations of molecule i, n denotes the solid angle (i.e. s1= 4.rr for linear molecules, 
Cl = 8 7 ~ *  for nonlinear molecules) and h(12), the molecular total correlation function, is 
given by 

h(12)=g(12)-1.  (4) 
The RISM method for calculating the functions hap(r)  consists of defining a site-site 

direct correlation function caP(r)  via an extension to molecular fluids of the Ornstein- 
Zernike (OZ) equation for simple fluids (Ornstein and Zernike 1914). This matrix 
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equation, already shown (Stell et a1 1980) to be simply the oz equation transcribed 
into site-site language, has the following form in Fourier k-space: 

h ( k )  = U ( k ) c ( k ) w  ( k )  + p a  ( k ) c ( k ) h ( k )  ( 5 )  

where h R p ( k )  = [ h ( k ) l R p  and c R p ( k )  = [ c ( k ) l R p  are the Fourier transforms of the 
functions hap ( r )  and cRS ( r )  respectively, p is the number density of molecules and 

w a p ( k )  = (sin klRp)/klap9 cy +@, 
= 1, cy =p .  (6) 

The function w a p ( k )  = [ m ( k ) l R p  is the Fourier transform of the intramolecular pair 
correlation function, wap( r ) ,  given by 

The RISM theory supplements the RISM oz equation ( 5 )  with the closure relations 

hap(r) = -1, r < uRp, (sa) 

c,p(r) = 0, r > r R p ,  (8b) 

where the parameters map are defined in (2). 
The RISM theory for molecular fluids is closely linked with the PY (Percus and Yevick 

1958) approximation for hard spheres, where the atomic total and direct correlation 
functions (hHS(r) and cHs(r ) )  satisfy the scalar oz equation (Ornstein and Zernike 1914) 
in Fourier space, 

hHs(k) = CHs(k) +pCHs(k)hm(k) ,  (9) 

hHS(T) = -1, r < r, ( loa)  

C H S ( T )  = 0, r > U, ( lob )  

where p is the number density of atoms and u is the hard sphere diameter. In certain 
limiting cases, the RISM approximation reduces to the PY approximation for hard 
spheres: clearly, one such case is that of a spherical molecule having one site only at its 
centre. 

The RISM approximation enables the site-site correlation functions to be calculated 
in a computationally convenient fashion (Lowden and Chandler 1973), and has been 
applied to a large number of molecular fluids (e.g. Lowden and Chandler 1974), some of 
which can be regarded as models for quite complex molecules. In many of these 
applications, the RISM approximation has exhibited qualitative success in accounting for 
the short-range structural properties of the fluids studied; for exceptions see Streett and 
Tildesley (1978) and Murad et a1 (1979). 

The RISM theory is an approximation to a formally exact treatment of molecular 
fluids where ~ ( 1 2 )  satisfies (1) for general u R p ( r )  (i.e. not restricted to hard sphere 
potentials); we shall refer to this formally exact treatment as the interaction site 
formalism (ISF). Ladanyi and Chandler (1975) have studied the ISF in great detail using 
diagrammatic expansions. 

It is tempting to regard RISM as an approximation to the ISF for fused hard spheres in 
the same spirit that PY is an approximation to the formally exact Mayer cluster theory 

and satisfy the closure relations 
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(Hansen and MacDonald 1976) for the atomic fluid, an analogy reinforced by the 
similarity of the defining equations ( ( S ) ,  (8), (9) and (10)) for the two systems. To a 
certain extent, 3s shown in the Appendix, this is the case; however, the nature of 
molecular fluids is apparently such that the assumption of finite-ranged direct cor- 
relation functions (equation (86)) is an approximation which leads to significantly larger 
errors in the case of fused hard spheres than it does for the atomic hard sphere fluid. This 
is evidenced by noting the following three facts. 

(1) The agreement between the RISM results for the hap(r)  and the results from 
machine simulation is considerably less satisfactory than that between the PY and 
simulation results for the atomic hard sphere fluid. 

( 2 )  As noted in the Appendix, the RISM approximation results not only in diagrams 
being dropped from hap(r) ,  but also in the inclusion of an infinite class of diagrams at 
each order in density which are not allowed in the exact theory. 

(3) Recently, it has been noted by Chandler (1978) (for G2) and demonstrated by 
Sullivan and Gray (1981) that RISM gives incorrect results in evaluating the dielectric 
constant E ,  and the angular correlation parameters GI for linear molecules defined as 

where Pi (x )  is the Legendre polynomial of order 1 and y12 is the angle between the 
symmetry axes of the two linear molecules. It has been shown (Sullivan and Gray 
1981), by expressing GI in terms of site-site correlation functions hap ( r )  and evaluating 
the latter in the RISM approximation, that G1 is identically zero for any linear molecule, 
while G2 is identically zero for any symmetric linear molecule. Neither of these results 
would be expected in a more exact treatment. The results of Sullivan and Gray (1981) 
are conditional only on the use of the RISM oz equation and on the direct correlation 
functions decaying sufficiently fast to ensure that the Fourier transform of cap ( r ) ,  
c , , ( k ) ,  satisfies 

c a p ( k ) = c h O I : + k 2 c ~ ~ + k 4 c ~ ~ + .  . . . (12) 

This will therefore, in particular, be the case for the RISM approximation for fused hard 
spheres, and will also be the case when various other closure approximations (Sullivan 
and Gray 1981, Cummings et a1 1981) are employed, and in any extensions to soft-core 
potentials whenever the RISM oz is used and (12) is satisfied. 

In this paper we are interested in examining another anomaly of the RISM approxi- 
mation which arises as a consequence of the errors introduced by the assumption (86). 
This is the dependence on so-called ‘auxiliary sites’ i.e. an interaction site whose 
presence doss not affect the total pair interaction u(12) (Chandler 1973). In 8 2 ,  we 
examine the concept of an auxiliary site in detail and summarise the previously 
published results on the auxiliary site problem in both the ISF and RISM. Following this, 
in Q 3, we examine, using the diagrammatic expansions given in the Appendix, the 
auxiliary site problem for the degenerate case of a single sphere with one auxiliary site; 
this problem makes possible a direct comparison between the ways in which RISM and 
ISF handle the auxiliary site problem. This analysis leads to conjectures regarding the 
sizes of auxiliary sites allowed in RISM which have the physical property of leaving 
results for correlations between real (non-auxiliary) sites unchanged; these conjectures 
are pursued in Q 4 for a symmetric diatomic molecule. 

Note that we expect that there will be dependence on auxiliary sites not only with the 
closure (8b), but also with any approximate closure to the RISM oz equation; on the 
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other hand, the defects noted in (3) above can be remedied (in the sense that GI, G2 and 
E are rendered non-trivial) by an improved (but nevertheless approximate) closure (see 
Sullivan and Gray 1981). 

2. Auxiliary sites in RISM 

An auxiliary site in the ISF is characterised by the following property of the inter- 
molecular potential: 

u ( 1 2 ) w i t h  auxiliarysite = U ( 1 2 ) w i t h o u t  auxiliarysite. (13) 

Consequently, in any rigorous theory, the inclusion of an auxiliary site can have no 
effect on the correlation functions of the fluid. That is, if a and p are real (non- 
auxiliary) sites we have 

hap  ( r ) w i t h  auxiliary sites = hap  ( r )wi t tmu t  auxiliary sites. (14) 

An example of an auxiliary site problem which received considerable attention in 
the work of Ladanyi and Chandler (1975) is that of a sphere (the centre of which is the 
only real site, site 1) with an arbitrary number of auxiliary sites (labelled 2, 3, . . . , m). 
The geometry of this problem is shown in figure 2. 

Figure 2. Two spheres with auxiliary sites shown with the real sites (sites 1 in each sphere) at 
their distance of closest approach. 

It is clear that sites 2 to m remain auxiliary provided the site-site potentials satisfy 

uap ( r )  = a, r < v a p ,  

= 0 ,  r > U ~ O P ,  (15) 

U11 = 0; (+la = Ual s U - l la ,  Uap s - 11, - 116, (16) 

where 

and U is the diameter of the enveloping hard sphere. 
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In the ISF, it is clear that the result for h a p ( r )  must be the same for all values of ual 
and crap up to and including the limits in (16) .  Hence the results for hap(r)  can be 
obtained by setting ula = crap = 0 for all 2 < cy, p < m. Considering the expansion for 
hap(r)  given in the Appendix (equation (A5)) it is straightforward to derive that (see 
Ladanyi and Chandler (1975, p 4317) for details) 

h,p(k) = W l a ( k ) W l p ( k ) h H S ( k )  (17)  
where h H s ( k )  is the Fourier transform of the total correlation function for hard spheres 
of diameter U and at density p, and oUp ( r )  is defined in (7) .  Note that oUp ( r )  is simply 
related to s:hm(r) defined in the Appendix (equation (A5)) by 

W , p ( r )  = ~ , p a ( r )  + ( 1  - a a p ) d h m ( r ) .  (18)  
In particular, therefore, (17)  implies (14)  holds for cy@ = 11. 

It must be emphasised at this stage that (17)  is derived by noting that in the formally 
exact ISF the auxiliary site results are independent of the diameters of the auxiliary sites 
provided that the inequalities (16)  are satisfied, and hence can be derived for all cases 
by considering the particular set of uap chosen (ula = crap = 0) to satisfy these inequali- 
ties. 

In an approximate theory such as RISM we are no longer assured that, given (13) ,  
(14)  follows. Hence for the particular case of the sphere with auxiliary sites it does not 
automatically follow that (17)  holds (for some appropriate approximate h H s ( k ) )  given 
that the inequalities (16)  hold. However, it has been pointed out by Ladanyi and 
Chandler (1975, p 4321) that the RISM approximation for a sphere with auxiliary sites 
yields 

[ h a p  (k)]RISM = W l a  ( k ) W l p  (k)hpy(k) ,  ( 1 9 0 )  

[Cap (k )IRISM = 6 I 1 pC py(k),  (196)  
where h p y ( k )  and c P Y ( k )  are the PY approximationsfor h H s ( k )  and cHs(k) respectively. 
This result cannot be derived directly in any obvious way; it must be accepted as being 
suggested by (17) or by the numerical solution using the Lowden programs (Lowden 
1975). However, it can be verified analytically by noting that (19b)  ensures that the 
closure (8b)  is satisfied trivially, and inversion of ( 1 9 a )  to real space yields 

hap(r) = -1 ,  ( 2 0 a )  

hl,(r-) = -1 ,  r < U  - ll,. (20b)  
This ensures that the closure ( 8 a )  is satisfied. Since (19a)  and (19b)  also satisfy the RISM 

oz equation, and we assume that the solution is unique, then (19)  represents the 
solution of the RISM problem for the sphere with auxiliary sites. 

The case of a sphere with auxiliary sites is unique in a number of ways: first, it 
represents the only auxiliary site problem in which the site-site correlation between real 
sites is unaffected by the presence of auxiliary sites in the RISM approximation; 
secondly, we see that, in the ISF, the solution to the RISM oz equation for caB(r)  in the 
present case is simply given by (19b),  where cPY(k)  is replaced by its exact hard sphere 
counterpart (this latter observation suggests that improvements to RISM can be made by 
more appropriate closures for cap(r ) ) ;  finally, it represents the only m-site RISM 

problem ( m  > 1) where an analytic solution has been found. 
In the case of a symmetric diatomic molecule with an auxiliary site situated at the 

midpoint of the line joining the two real sites (sites 1 and 2 )  (the geometry of this 

r < U - 11, - lip, 
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problem is shown in figure 3), the following observations were made by various authors 
(Hsu et al 1976, Hazoumt 1978, Chandler et al 1977). 

(i) Whilst in the ISF there should be no dependence on the third auxiliary site 
provided 

(the upper limits in (21) represent physically the distances of closest approach for 
interactions involving auxiliary sites), RISM does show dependence on the auxiliary sites 
for u23, u33 in the ranges given in (21) (Hsu et al 1976). 

Figure 3. A symmetric diatomic molecule with two real sites (sites 1 and 2) and an auxiliary 
site (site 3) located at the centre of the molecule. 

(ii) On the basis of comparison with simulation undertaken by Chandler et al 
(1977), Hazoumt (1978) concluded that the inclusion of an auxiliary site with inter- 
action distances given by the upper limits in (21) leads to an improvement in the site-site 
correlation functions between real sites (i.e. ~ I I  = h12 = h21= ,522). 

Although not discussed by these authors, there are a number of interesting 
questions regarding the auxiliary site problem for a diatomic molecule. 

(1) Consider the particular case of the inequalities given in (21) when 

~ 1 3  = ~ 2 3  = ~ 3 3  = 0 (22) 

which in turn (via ( 8 b ) )  yields 

c13(r) = c d r )  = c33(r) = 0 

hll(r) = hlz(r)  = h21(r) = h22(r) = h!?(r+) 

for all r. (23) 
Substitution of this closure into the RISM oz equation for a three-site problem yields 

(24) 

where h::’ ( r )  is the site-site correlation function calculated via RISM for a symmetric 
diatomic molecule without an auxiliary site. Hence the RISM approximation satisfies 
(14) for at least one set of values of u13, (T23, u33: an interesting question is: over what, if 
any, range of values for ~ 1 3 ,  U23, u33 is (14) satisfied? 

(2) What is the essential difference between the case of a sphere with auxiliary sites 
and a diatomic with an auxiliary site such that (14) is satisfied in RISM for the first case 
and not the second? 
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(3) Why should the site-site correlation functions calculated with interaction sites 
of physical diameter be superior to those calculated without auxiliary sites? 

The answers to these questions are dealt with in the remainder of this paper. It turns 
out that by examining question (2) first, predictions can be made regarding the answer 
to question (l), and valuable insight is gained into the answer to question (3). Hence in 
5 3 we examine in detail the success of KISM in showing no dependence on auxiliary sites 
for the case of a sphere with auxiliary sites. In 8 4, questions (1) and (3) are then dealt 
with in detail. 

3. A sphere with an auxiliary site 

In this section we consider the way in which the ISF and RISM deal with the case of a 
sphere with a single auxiliary site. The reason for considering this case is to simplify the 
graphical manipulation (although it is easily extended to cases where there is more than 
one auxiliary site), and to make the RISM/ISF comparison as straightforward as possible, 
since in higher-order problems it would be necessary to discuss s$m,,-bonds, 2 < n < m 
(refer to Appendix (A6)), which are not present in RISM. 

It is our intention here to demonstrate that the RISM approximation shows no 
dependence on auxiliary sites for the problem under discussion, somewhat fortuitously: 
the most favourable result for RISM would be that it shows the correct behaviour 
because the class of diagrams it omits (APII, Appendix) and the class of diagrams it 
incorrectly includes (APIII, Appendix) are both trivially zero for the case of a sphere 
with an auxiliary site. If this were the case, then RISM’S, success for the present auxiliary 
site problem could be considered a strong point in favour of RISM, since it would mean 
that essentially RISM mimics the ISF in its treatment of this auxiliary site problem. 
Unfortunately we find that this is not the case. 

The arguments leading to this conclusion unavoidably involve diagrammatic 
expansions in a detailed way. Our intention is to compare the ways in which the ISF and 
RISM expansions for h l l ( r )  reduce to the expansion for hHS(r)  and hPY(r)  respectively. 
This comes about through widespread cancellation of graphs in each expansion. 

To understand this cancellation, it is necessary to consider briefly the way in which 
the diagrams in the ISF expansion are obtained. We begin by noting that, in the case of 
any two-site problem, the molecular Mayer f-function can be written in terms of the 
site-site Mayer f-functions (see the Appendix, (A2)-(A4)) as 

f(12) - f l l + e l l ( f 1 ~ + f ~ 1 + f ~ ~ + f 1 ~ f ~ ~ + f 2 . l f ~ 2 + f 1 ~ f ~ 1 + f 1 ~ f ~ 1 f ~ ~ )  (25) 

where f u p  is shorthand for f a P ( r u P )  and e l l ( r )  for the HS case is given by 

Physically, it is straightforward now to see that f(12) reduces to f l l ( r )  only, since for 
cup # 11 fop  ( reo )  is non-zero only if rap < uup G -11, - 1 1 ~  (note that for the present 
purposes it is convenient to consider that 111 = 0; cf (20)). From figure 2 it is clear that 
for any of the fa@ to be non-zero, Ir:’) - ril) I < U. However, this is precisely the range 
over which ell(lrj l)  - ril)  1)  is zero; thus 



Auxil iary sites in RISM 1491 

Hence we expect that the ISF expansion for h l l ( r )  should reduce to h H S ( r )  through the 
cancellation of all graphs generated in the site-site formalism except those required in 
the Mayer cluster expansion for h H S ( r ) .  

To follow the cancellation through to the level of the diagrammatic expansions, it is 
easiest to produce two expansions: one which arises from the use of both (25) and (26) in 
the definition for hap(r,  r')  (equation (3)), which leads to the expansion given in the 
Appendix (equation (A5)) in terms of fap-bonds alone; the second comes from using 
(25) only, which leads to an expansion in terms of fep-bonds and ell-bonds. From the 
above discussion it is clear that all the diagrams containing ell-bonds must have value 
zero; moreover it is clear from (25) that each diagram containing one ell-bond may be 
obtained as the sum of two diagrams which differ only through the absence of an 
fll-bond. This principle will be used to demonstrate the differences between the ISF and 
RISM treatments of the present auxiliary site problem. 

Consider the ISF expansion for hl l ( r )  at order po :  the diagrams contained in this 
expansion are shown in figure 4. It is straightforward at this level to see the cancellation 
mechanism: for example, diagrams 2 and 3 differ only by the absence and presence of an 
fll-bond between the root (white) circles. Thus the sum of diagrams 2 and 3 is the 
diagram 

$1) A*,lj 
where - - -symbolises an ell-bond, -an f-bond and OwQ an s2"-bond. That such 
a diagram is zero can be readily seen by noting that the black circle must be a 2-site 
(since sites at the ends of s*'"'-bonds must be different). The integral corresponding to 
this diagram is thus 

(29) 

The s-bond function is given by (see the Appendix, equation (A6)) 

.Y;(2(lr-Xl) = 6 ( / r - X I  -112)/47~/:2. (30) 

From (30), it can be seen that the effect of the s:i2-bond is to restrict the 2-site to lie on a 
sphere, radius lI2,  centred at the root-point 2"'. For our present purpose let us label the 
circles in the diagram (28) with letters as follows: 

Hence the effect of the s;f-bond in the integral (29) is to require that BC = 112, where 
BC denotes the distance between the points B and C in the diagram (31). Similarly, 
from the discussion above concerning the non-zero range of fop it is clear that 
AC < C T I ~  < CT - 112. Hence, from the triangle inequality 

AB < A C + C B  <CT- 112+ 1 1 2 = ( ~ .  (32) 

But for AB <U,  ell(Ir1) is zero (cf (26)); thus the integral (29) is zero. Consequently 
diagrams 2 and 3 in the ISF site-site cluster series for h l l ( r )  cancel. 
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A fP1 

2 

sa 
l12! 21Pi 

6 

10 

A A  llnl 2 1 ~ 3 1  liai 

3 4 

1 1  1 2  

A ,‘“I $111 

5 

13 

14 15  

Figure 4. The diagrams generated in the ISF for a two-site problem by the molecular 
diagram 010 Diagrams 12-15 inclusive are dropped in the RISM approximation. 

Similar arguments to these may be provided for all the cancellations examined in 
this section; however, we will not go into any further details on the cancellations 
involved in this section, since they are easily derived by comparing the expansion for 
h l l ( r )  in terms off- and s-bonds only with that for h l l ( r )  in terms off-, s- and ell-bonds. 
The argument we have given above is simply a reflection of that cancellation. 

In table 1 we have given the complete cancellation table for the graphs in the ISF at 
order po. As can be seen, the expected result is obtained-i.e. that the molecular 
diagram i 0 1 3 2  has precisely the value of the single diagram 11’) -PI, which is the 
first term in the Mayer cluster expansion for the hHS(r ) .  Also it can be seen that the 
diagrams in figure 4 which are dropped in RISM (diagrams 12, 13, 14, 15) constitute a 
self-cancelling subset of the ISF. It is not difficult to see that the additional infinite set of 
diagrams summed in RISM (cf the Appendix) are self-cancelling as well, since they will 

Table 1. Cancellation between pairs of site-site ISF diagrams given in figure 4. 

Retained in RISM 

1 0 , l l  

Dropped in RISM 14 ,15  
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occur in pairs of diagrams which are identical except for the presence or absence of an 
fll-bond connecting the white circles. 

Hence we have the following result: 

At this point it is tempting to regard the process observed at order p o  to be carried 
through at each order in density, hence yielding the known results discussed in § 2. If 
the process were to continue in this manner, RISM would have to be regarded in a very 
favourable light: the implication would be that in this auxiliary site problem RISM yields 
the physically correct result-i.e. (14)-because the contributions dropped in RISM 
(APII, Appendix) are trivially zero for the auxiliary site problem and the infinite class of 
disallowed diagrams additionally summed in RISM (APIII, Appendix) is also trivially 
zero. 

That this is not the case is illustrated by considering the molecular diagram 

1 A2 (34) 

which is O(p’) .  In the ISF for a two-site problem, this diagram generates 117 
topologically distinct diagrams shown in figures 5 and 6. Since the black circles 
represent sums over possible sites, each diagram (except for those marked with an 
asterisk) corresponds to the sum of two diagrams with the black sites labelled. Some 
examples of this labelling are shown in figure 7. 

Using the same principles as those used above at O ( p o ) ,  a cancellation table can be 
drawn up and is shown in table 2. For the ISF the expected result is obtained-i.e. that 
all the diagrams generated by the molecular diagram (34) cancel, leaving the single 
diagram l(f), which is precisely the diagram in the cluster expansion for hHS(r) to which 
diagram (34) corresponds. (The cancellation pairs given in table 2 can be checked by 
using the graphical results given in equations (40) below.) 

The significant feature of table 2 which is different from table 1 is that the diagrams 
dropped in RISM no longer form a self-cancelling subset of the ISF diagrams. Hence, in 
order for the RISM approximation to show no dependence on the auxiliary site in this 
case, the diagrams in RISM, which in the ISF cancel with non-RISM graphs, must now 
cancel with a subset of the infinite set of disallowed diagrams (APIII, Appendix) which 
are additionally summed in RISM. (Note that there are a small number of additional 
cancellations possible among the allowed RISM graphs-e.g. 5(b), 20(f); 25(f), 26(f); 
42(f), 44(f); 41(f), 45(f). Such cancellations are not expected, however, to reflect the 
true cancellation in RISM, since some hinge crucially on the restriction to a two-site 
problem and hence do not explain the cancellation in RISM in the problem of a sphere 
with more than one auxiliary site.) Plausible cancellations between these allowed RISM 
graphs and the disallowed infinite set are easily imagined. For example, consider 25(f): 
a plausible cancellation can be found by pairing this diagram with the diagram 
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1 2 3 4 5 6 7 8 

9 10  1 1  12 13 14 15 16 

17 

25 

18 19 20 21 22 23 2 4  

Ic36-2fi 2 a  06x9 29 30 31  

26 27 

32 

39 

46 

33  34  35 36  3 7  3 8  

g;;gnnflaa 41 42  43 44  45  

pi0 4 8  

4 0  

4 7  

in the ISF' for a two-site A Figure 5. The diagrams generated by the molecular diagram 
problem that are retained in the RISM approximation. 

TO verify this, consider any function p ( r )  with the property 

p ( r )  = 0 ,  r > R, R < ff - I l a ,  (36) 

and consider also the function 

P ( r )  = p ( r )  ~ I I ( X ) S ? ~ ~ ( ~ X - -  r / )  dx (37) 

where r = Irl. Then from Ladanyi and Chandler (1975, equation (3.7)) we have 

Forv<R < ( + - l l a ,  r+II ,<crandfl l ( ,u)  takesthevalue-1. Hencetheintegralin(37) 
may be performed, yielding 

P ( r )  = - p ( r ) ,  r < H .  (39) 
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49* 50  51 52 53 54* 55 56  

5 7  58* 59 60 61 62 63 64 

65* 66  67* 68 6 9  70 71 

72 73 74 75 76 7 7  7 8  

79 80 81 82 83 84 85  

8 6  8 7  88 89 9 0  91 92 

93 94 95 9 6  97 98 9 9  

100 101 102 103 104 105 106* 

oefie+nfl$% 107 108 109 110* 1 1 1  112* 113 

114 115 116 117* 

in the ISF for a two-site A Figure 6. Diagrams generated by the molecular diagram 

problem which are dropped in the RISM approximation. Diagrams marked with an asterisk 
have only one distinct labelling (refer to text, 5 3). 
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21!f) 21 (b i  

111 12) (2)  f$ (2)  

p' 211' 111 2 1 ? l  

50( f i  50 ( b l  

109lf i  1 0 9 ( b i  

Figure 7. Examples of forward If) and backward (b) labelling of the diagrams in figures 5 
and 6 .  The labelling is done as follows: since s2"-bonds have different sites at each end, the 
black circles at the end of an s*'*-bond which is rooted to a 1"' or 2"' white circle are 
labelled (2). The diagram is then traversed clockwise starting at the 1"' white circle, 
labelling the unlabelled black circles in a forward fashion ((1)(2)) or backwards ((2)(1)). 

Hence P(r)  = - p ( r )  for all r, since P(r> will also be zero wherever p ( r )  is zero. The fie 

and the convolution of sla with f a p  both satisfy criterion (36 ) .  Hence we have the 
following diagrammatic results: 

A = - -  

i l l  ( P I  11) ip1 

Using similar arguments, it is easily shown that 

! l i  ( 1 )  
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Table 2. Cancellation between pairs of site-site ISF diagrams generated by the molecular 
diagram (34) as given in figures 5 and 6. Diagrams retained in the RISM approximation are 
underlined. The diagrams in boxes are labelling-direction independent (cf figure 6). 

102(f), 105(f) m, 107(b) 
107(f), 
108(f), 109(f) 
lll(f), 114(b) s), 113(f) 
11 ,115(f)  
113(b), 116(b) 
114(f), 116(f) 
115(b), 11171 

Thus the diagram (35) is easily seen to have the value 

11 

and hence will cancel with 25(f). The key feature of 25(f) that enabled a cancelling 
disallowed diagram to be found is the presence of an external f12-bond, which in turn 
allowed the addition of an appropriate diagrammatic segment so that the result (40a) 
could be employed. Clearly, then, this same procedure can be used for the diagrams 
7(f), 23(b), 25(f), 26(f), 27(f), 28(f), 31(b), 33(b), 36(b), 46(f), 47(f) and 48(f), which are 
also retained in RISM and have in common with 25(f) an external flz-bond. 

Other diagrams retained in RISM, e.g. 5(b) and 10(b), have in common the absence of 
an external f12-bond. However, cancelling diagrams can be found by adding diagram- 
matic segments so that result (40c) can be employed. Hence, we have found a scheme 
which allows cancellation of the allowed diagrams retained in RISM, and which will work 
at every order in density. We have not, however, been able to establish that the 
remaining disallowed diagrams which are summed in RISM are self-cancelling, although 
inspection of these diagrams suggests that they are indeed self-cancelling in a similar 



1498 P T Cummings, C G Gray and D E Sullivan 

manner to that displayed at order p"'. At this point we must now accept that this 
cancellation is complete, i.e. that the net result of all these cancellations for the 
molecular diagram (34) is the single diagram 

which occurs in the expansion for hF'(r) for hard spheres. 
'The final conclusion, then, is that RISM shows the correct physical result-i.e. no 

dependence on the auxiliary site for the present case-somewhat fortuitously: it is nor 
because the particular choice of auxiliary site problem (that of a sphere with an auxiliary 
site) ensures that the contribution due to neglected graphs is trivially zero and the extra, 
infinite class of disallowed graphs is also trivially zero. RISM only manages to obtain the 
correct answer in the present circumstances by a fortuitous cancellation of the effect of 
neglected, allowed diagrams and the infinite class of disallowed diagrams. 

There is an important consequence which follows from the analysis of this section, 
which is that it should be possible to concoct higher-order auxiliary site problems (e.g. 
for diatomics) where for particular sizes of auxiliary sites RISM shows no dependence on 
the auxiliary site. Since RISM shows no dependence on an auxiliary site contained within 
a sphere, and we have shown that this results from a cancellation between diagrams 
which in turn comes about because of the relationship between the veo and v 1 1  implied 
by the geometry of the sphere with auxiliary site, it is tempting to suggest that such a 
cancellation will persist in higher-order problems when the diameter of the auxiliary 
site is such that the auxiliary site is completely enclosed in the interior of all the fused 
hard spheres comprising the molecule. For example, in the case of a diatomic molecule, 
it would be conjectured that provided the auxiliary site lies entirely within the 
intersection (co-sphere) of the two hard spheres comprising the diatomic, then there 
wouid be no dependence on the auxiliary site, Such a conjecture is verified in the 
following section. 

4. Symmetric diatomic molecule with a single auxiliary site 

For convenience, in this section we consider a symmetric diatomic molecule with two 
real sites (sites 1 and 2) of diameter U and l I 2  (simply denoted 1) equal to u/2. The 
auxiliary site (site 3) will be placed at the centre of the molecule (hence 113 = 1 1 2 / 2  = 
v/4). The only distinguishable correlation functions will thus be hl l= h12 = h21= h 2 2  

(denoted hss(r),  the site-site correlation function), h33 (denoted Iz,,, the centre-centre 
correlation function) and h I 3  = h 3 1  (denoted h,,, the site-centre correlation function). 
In the absence of an auxiliary site, hss(r) is simply hss(d)(r) ,  the correlation function for a 
qymmetric diatomic molecule. In all the calculations reported in this section, the 
Lowden programs (1975) have been used in an unmodified form. 

It has already been noted in 8 2 that hss(r) exhibits no dependence on the auxiliary 
site for 

(42) ( T I 3  = U 3 3  = 0 

since, in this limit, the RISM oz equation reduces to the oz-like equation for a symmetric 
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diatomic molecule plus the following relations for h,,(k 
ment): 

and hcc( k 

Further, the conjecture contained at the end of Q 3 suggests that 

k ( r )  = h::)(r) 

(after rearrange- 

(44) 

when u~~ < a /2 .  This corresponds to the auxiliary site being enclosed in the co-sphere 
of the two hard spheres of diameter U ,  It is not clear, however, for what values of a 1 3  

equation (44) is satisfied. For convenience, we will assume that theie is a critical value 
of ~ 1 3 ,  aT3, for which f l 1 3 < a T 3  in conjunction with o-j3<c+/2 ensures that (44) is 
satisfied. Hence our conjecture is as follows: 

(45) * h,,(r.) = h:: ) (r )  whenever u33 s u / 2 ,  U 1 3  s u 1 3 .  

Making use of the Lowden programs, we have found that ufj = (712, i.e. we have 
found that 

hss ( r )  = h i f ’ ( r )  whenever s aI2, a 1 3  =? uI2. (46) 
Hence the important point in RISM is not the presence or absence of an auxiliary site, but 
rather the size and position of the auxiliary site. The dependence on auxiliary sites 
reported by Hsu et a1 11976) should, thcrefore, be properly regarded as dependence on 
auxiliary sites of sufficiently large size. 

In discussing the results for a diatomic with auxiliary sites, it is convenient to define 
five particular sets of values of U13 and u33 (denoted SETl to SETS) which satisfy the 
inequalities (21). These are given in table 3. SET3 corresponds to the assumption that 
uj3 satisfies the upper limit given in (44), and the diameters of the auxiliary site are 
considered to be additive: SET4 corresponds to the largest value of u33 for which the 
third site is contained inside the symmetric diatomic, while (+I3 comes from assuming 
that the diameters are additive; SET5 represents the upper limit given in (21). In the 
latter case, the third (auxiliary) site projects beyond the molecule. 

Table 3. Sets of values for c7j3  and 0 3 3  used in the discussion given in S 4. 

SETl 
SET2 0 3 3  = = 0.5 
SET3 

cr33  = (r13 = 0 

~ 3 3  = 0.5, ~ 1 3  = 0.75 
SET4 
SETS 

0 3 3  = (3/2)”*, ~ 7 1 3  = (2 +\6) /4  
~ 3 3  = (7/8)1’2, c713 = (15/16)”2 

In verifying (46) we consider the RISM approximation for a symmetric diatomic 
molecule at density pa3  = 0.5. In figure 8 the site-site radial distribution function 
( g s s ( r ) )  is shown for various values of a 1 3  and u33. The symmetric diatomic result 
(gS4(d)(r) = h,,(d)(r) + 1) and the results for SETl and SET2 are all the same function, 
shown by the solid line. The results for SET3, SET4 and SET5 are also shown. The 
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2 5  

2 0  

1 5  

- 
L 
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1 0  
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0 1 0  2 0  3 0  
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Figure 8. The site-site correlation function calculated in the RISM approximation at density 
p(r3 = 0.3; the symmetric diatomic result (gL:)(r)) ,  SETl and SET2 (all indistinguishable) 
(-); SET3 (. ' .); SET4 and SET5 (- -); Monte Carlo (MC) results (0) (G P Morriss 
1980, private communication). 

SET4 result for g s s ( r )  is indistinguishable from the result for SET5 on the scale of this 
graph. The result for SET3 shows intermediate dependence on the auxiliary site. 

In figure 9, the centre-centre correlation functions are shown. Their main feature is 
that except for SETS, they are unphysical, having regions where gcc(r )  < 0 inside the 
physical core. By including an auxiliary site with interaction distances set by the upper 
limits of (21) (i.e. SETs), the centre-centre correlation functions are of course made to 
be physical. Since this is a clear improvement over the case of a diatomic molecule 
without auxiliary sites (the SETl curve yields this centre-centre correlation function), it 
might be suggested that a corresponding improvement might be found in g S S ( r ) ,  as 
suggested by HazoumC (1978) based on the results of Chandler et a1 (1977). 

Examining figure 8, we see that this indeed appears to be the case: g d r )  for a 
molecule with an auxiliary site with interaction distances given by SET5 appears to 
show the following improvements over g$?(r): the height of the peak at r = 1 . 0 ~  is 
greater, in closer agreement with the Monte Carlo (MC) results (G P Morriss 1980, 
private communication); the cusp at r = 1 . 5 ~  is higher, again in closer agreement with 
the MC results; at r > l.Scr, the phase of g s s ( r )  is in better agreement with the MC result. 
However, for 1 . 2 ~  < r < 1.5~7 there is a curious secondary minimum in gss ( r )  which is 
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Figure 9. The centre-centre correlation function in the RISM approximation at density 
p a 3  = 0.5; SET1 (-); SET2 (-X-); SET3 (. . .); SET4 (---); SET5 ( - '  -), 

not present in the MC results, which tends to detract a little from the overall conclusion 
of HazoumC (1978) that gss ( r )  with ~ 1 3 ,  u33 given by SET5 is an apparent improvement 
over ggt) ( r ) .  

However this improvement is, to a certain extent, illusory, as is demonstrated by 
examining the symmetric diatomic with an auxiliary site ( ~ 1 3 ,  ~ 3 3  given by SETS) at 
lower densities, as shown in figures 10-13 at densities p v 3  = 0.2,0.3,0.4 and 0.6 
respectively. A common feature in the lower density graphs ( p a 3  < 0.4) is a qualita- 
tively and quantitatively incorrect peak at r = 1 . 0 ~ .  Since this peak has no physical 
origin (being absent from the MC data) we are forced to attribute this behaviour solely to 
the way in which the RISM approximation deals with auxiliary sites. 

The second common feature in these figures is that there is, for all values of p, better 
agreement between the MC values and gss ( r )  for the diatomic with an auxiliary site for 
r > 1 . 5 ~ .  

Thus we conclude that the inclusion of an auxiliary site causes the site-site radial 
distribution function ( g s s ( r ) )  to be both qualitatively and quantitatively incorrect at 
small separations, although it is clearly a significant improvement at larger separations. 
One consequence of this is that we must regard the improved peak height at r = 1 . 0 ~  for 
p a 3  = 0.5 and 0.6 (figures 8 and 13) as having its origin in physically wrong effects in 
RISM, and hence it should not be regarded as an improvement (at this range) over the 
result for a symmetric diatomic without an auxiliary site. 

A possible explanation for the observed trends (i.e. worse agreement at small r, 
better agreement at large r )  now follows, although it must be stressed that this 
explanation remains a conjecture whose verification would be difficult. A major 
difference between a RISM treatment and an ISF treatment for gss ( r )  for a diatomic with 
an auxiliary site is the absence of three-site intramolecular correlations in RISM. 'This is 
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Figure 12. As for figure 10, density p r 3  = 0.4. 
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Figure 13. As for figure 10, density p g 3  = 0.6. 
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a crucial deficiency, since in the ISF the translation from a two-site to a three-site 
(auxiliary site) formalism for the same diatomic molecule involves the introduction of 
further diagrams involving s2f-bonds (like those in figures 4-6) as well as diagrams 
involving s%fy-bonds. Since the net value of the expansion for hss(r)  is unchanged in 
going from the two-site expansion to the three-site expansion (provided the third site is 
auxiliary), the extra set of diagrams generated must be self-cancelling. Since the 
distances reap involved do not satisfy the simple linear geometrical relationships 
satisfied in the case of the sphere with embedded sites (§  3), the cancellation involved 
here can be expected to be of a more subtle type than that encountered in 8 3.  In 
particular, it is easy to envision cancellation between diagrams involving s2f-bonds and 
diagrams involving s?&bonds. This latter class of diagrams is absent from the RISM 

approximation for hss(r ) ;  hence it is possible that the RISM approximation sums, in many 
instances, one half of a self-cancelling pair. The point to note, however, is that 
s:f-bond diagrams which cancel with s?fY-diagrams in the ISF are likely to be quite 
short-ranged, in view of the fact that s:&:-bond diagrams involve three-site intramole- 
cular correlations, and that each of the three sites must be f-bonded to sites in other 
molecule(s), limiting to a certain extent the regions over which such diagrams are 

2 0  

1 5  

- 
1 0  

mu 

05 

0 

I I 

1 0  2 0  
r 

3 

Figure 14. Centre-centre correlation function calculated for r I3 ,  u33 given by SETS at 
pa3 = 0.2 (--), 0.3 ( -  x - x -), 0.4 ( - - - )  and 0.6 (- -). 
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non-zero. Thus a possible explanation for the apparent improvement at large separa- 
tions combined with worse behaviour at small separations is that RISM sums short- 
ranged contributions which would be cancelled in the exact ISF. 

In figure 14 we have displayed the gcc(r)  which arise in RISM when ~ 1 3 ,  c~~ given by 
SET5 are used at various densities. 

In conclusion, then, it is clear that the inclusion of an auxiliary site with physical 
distances of closest approach (the upper limits of (21), SETS) has a mixed effect on gss ( r )  
and gcc(r) .  On the one hand, g s s ( r )  is improved at large r and g d r )  is made to be 
physical. On the other hand, gss ( r )  is found to be qualitatively and quantitatively wrong 
at small separations. 
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Appendix. Graphical expansions in ISF and RISM 

In this Appendix, we quote the results for the diagrammatic expansions for hap (r) in the 
ISF and its RISM approximation, and note the differences between them. The ISF results 
are taken from Ladanyi and Chandler (1975), who give a complete account of the 
reduction of the full molecular cluster series for h(12) to the site-site cluster series for 
hap(r ,  r'). The RISM results are taken from Chandler (1976). 

We begin by noting the Mayer cluster expansion for h(12) which, in the standard 
graph terminology (Stell 1964), is given by 

h(12) = the  sum of all connected diagrams involvingf-bonds with two white one-circles 
(labelled 1 and 2), any number of black p-circles (molecular field points), at 
most one f-bond connecting any two circles directly, and no articulation circles. 

An articulation circle is a circle whose removal leaves a disconnected diagram, one or 
more of the disconnected parts containing white diagrams. Some of the diagrams in 
h(12) are exhibited in figure 15. 

The f-bonds referred to in the expansion (Al)  represent f ( i j )  functions in the 
integrals represented by the diagram. The function f ( i j )  is the full, angular Mayer 
f-function defined by 

(AI)  

f(12) = exp[-u(12)/kBT]- 1 (A21 

where u(12) is given by (l), k, is Boltzmann's constant and T is the absolute 
temperature. With u(12) written in terms of the site-site potentials uao(rao), f(12) can 
be written as a finite sum of terms involving site-site Mayer f-functions, defined by 

fao(r) = exp[ -~ ,~ ( r ) /kgTI -  1 ('43) 

as (Ladanyi and Chandler 1975) 
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+ + 

Figure 15. The first few ternis (through to O ( p z ) )  in the molecular cluster series for h (12) .  
The bonds are f ( i j )  bonds. Refer to (Al) .  

Taking the diagrammatic expansion (Al )  for h(12), replacing the f(ij)-bonds by 
sums of site-site terms given in (A4) and using the definition of hap(r ,  r')  in terms of 
h(12) given in (3), Ladanyi and Chandler derive the following graphical expansion for 
hap (r, r'):  

hap (r, r')  = the sum of all allowed interaction site diagrams with two white-circles 
labelled l ' a )  and 2('), any number of black circles, one or more f-bonds and 

In this expansion, 'f-bonds' and 's-bonds' denote sets of frs and sCi'",, bonds and the 
black circles represent sums over sites as well as integration over the positions of those 
sites. The s:iff l , bonds represent the function (Ladanyi and Chandler 1975) 

zero or more s-bonds. (A51 

n /  m sa,,, a,(x1, x:, 9 9 . , x n )  

and are called the n-site intramolecular correlation functions for an m-site ISF problem. 
They arise naturally through the use of (3) and in essence fix the relative positions of n 
sites (a1 ,  c y 2 ,  . . . , a,) within a single molecule. An important particular case is 
s2"(x1, x2) which is given by 

In representing pictorially the expansion (A5) the convention of Ladanyi and 
Chandler (1975) is followed: i.e. 
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A diagram in the expansion (AS) is ‘allowed’ (Ladanyi and Chandler 1975) if :  it is 
connected; any two circles are joined directly by at most one bond; the two white circles 
are joined directly by a single f-bond, if at all; all black circles must be intersected by at 
least one f-bond; any circle is intersected by at most one s-bond; and there are no 
articulation circles nor any articulation s-bonds. 

Ladanyi and Chandler (1975) discuss the symmetry numbers to be associated with 
the allowed diagrams; we do not concern ourselves with that problem here. T’ne other 
factor which must be associated with each diagram-that is, the appropriate power in 
density-is found by tracing back from the site-site diagram to the molecular diagram 
from which it has its origin, and finding the power of density associated with the original 
molecular diagram. This process is a well defined algorithm of three steps as follows. 

(a) Relabel the white l(a) and 2‘” circles as 1 and 2 respectively. 
(b) Compress all s-bonds onto the associated black circle(s). (It is convenient to 

(c) Between any two of the resulting circles connected by one or more ‘f-bonds’, 
think of the s-bonds as springs in this regard.) 

place a single, heavy line to represent an f(ij)-bond. 
For example, consider the following diagram: 

2 
1 

lb 
1 2 -A 1 2 

Hence the original diagram is O ( p j ,  since its molecular origin has a single p-circle. In 
figure 2 we present all 1.5 site-site diagrams generated by the first diagram in the 
molecular expansion (AS) in the case of the simplest molecular fluid, the diatomic fluid 
( m  = 2 ) .  For a molecule with m > 2, clearly there will be a further large number of 
diagrams generated containing .T””), yi4”“), etc bonds. Note that, even for the simple 

), generates 117 A case ( m  = 2) of a diatomic, the next diagram in figure 15 (i.e. 

topologically distinct site-site diagrams. These are shown in figures 5 and 6. 
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The advantage in the site-site formalism, as opposed to the molecular cluster series 
formalism, is that complicated integrals over both spatial and angular coordinates are 
replaced by simpler integrals over spatial coordinates only (Ladanyi and Chandler 
1975). However, it can be seen from the examples quoted above that this simplification 
has been achieved only by increasing dramatically the numbers of terms in and the 
complexity of the cluster series involved. 

In turning to the RISM approximation for hap(r) ,  we quote the results given by 
Chandler (1976). We begin by defining a set of diagrams IDmp} formed in the following 
way. 

(1) Place n ( 2 3 )  circles in a ring. 
(2) Colour two adjacent circles white, and all the rest black. Label the white circles 

l(m) and 2‘”’. 
(3) Connect all adjacent circles, except the white pair, with either s2”-bonds or 

f-bonds (Note: unlike the exact series, where s”” bonds, 2 < n < m, were allowed 
(equation (A5)), only s2”-bonds are permitted in this expansion). 

(4) Connect non-adjacent circles with zero or more f-bonds. 
The diagrams in D,, also satisfy the following constraints. 

( 5 )  The graphs are simply connected (i.e. no two circles are connected directly by 
more than one bond). 

(6) No two f-bonds cross over one another except at circles. 
(7) There are no black circles which are intersected only by s2”-bonds. 

The RISM approximation then consists of the following set of expansions. 

[ Y a p  (r)]RiSM = [ h a p  ( r )  + 11 exp[puap(r)l 

= 1 +sum of all the diagrams in {Duo}, (As) 

(A91 

(A101 

= f a p ( r )  + f a p ( r )  [the sum of all the diagrams in {Dap}] ( A l l )  

= fap ( r ) [ Y a p  (r)IRISM. 6412) 

[hap ( ~ ) ] R I s ~  = f a ,  ( r )  + [l + f a ,  (r)] [the sum of all the diagrams in {Dap}], 

[ C , , ( T ) ] ~ ~ ~ ~ =  the sum of all the nodeless diagrams in equation (A9) 

The RISM oz equation is derived by switching from the expansion for hap ( r )  (equation 
(A9)) in f-bonds to an expansion in c-bonds via the usual topological reduction 
procedure (Stell 1964). 

It is instructive at this point to note the following features of the RISM approximation 
for hap(r) .  

(i) Considering the exact series for h(12) (equation (Al)) and the site-site cluster 
series for h,,(r, r ’ )  (equation (A5)), it is clear that for every molecular diagram in h(12) 
there exists a site--site diagram with the same topological structure. For example, in 
figure 15, the molecular diagram ,010, generates, amongst others, the site-site 
diagram , i a ) M 2 i p )  (see figure 4). This diagram is included in the expansion of 
[hap(r)]RISM, equation (A9). Now consider the diagram 

1 2  

which is included in the exact expansion of h(12) (equation (Al),  figure 15): amongst 
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which is present in the ISF b! other diagrams it will generate the site-site diagram 

l la )  2113) 

expansion for hap ( r )  but is absent from the expansion for [hap  ( r ) IRISM (equation (A9)). 
The graph G is a member of the class of diagrams dropped in the PY approximation for 
h ( 1 2 )  (Stell 2964): in fact, the py-like topology of the diagrams in the expansion for 
hap(r )  (Chandler 1976) means that none of the diagrams which are dropped in the PY 

expansion for h ( 1 2 )  can be the molecular origin of any site-site diagrams summed in 
[hap(r)IRISM. Hence, it is straightforward to see that the RISM theory has, as its starting 
point at the molecular level, the PY approximation for h ( 1 2 )  rather than the exact series. 
This approximation will be denoted by API. 

iii) In addition to the PY approximation at the molecular cluster expansion level, 
there are two additional ‘approximations’ made by RISM in the translation to a site-site 
formalism. The first of these is: a large number of  the diagrams generated by molecular 
diagrams in the PY approximation for h ( 1 2 )  are dropped in [hap(r)]RISM(APII), For 
example in figure 4 the ,diagrams generated by the molecular graph are 
shown for the ISF; diagrams 12, 13, 14, 15 are dropped in the RISM approximation. 

in the In figures 5 and 6 ,  the site-site diagrams generated by the molecular graph 

ISF for a diatomic ( m  = 2 )  molecule are shown. Of these 1 L7 graphs, 69 graphs (those 
shown in figure 6 )  are dropped in the RISM approximation: i.e. even at order p ’ ,  RISM is 
dropping more than half of the expected site-site diagrams. At  higher orders of density, 
and for more complex diagrams in the PY approximation for h(12) ,  the fraction of 
graphs retained by the RISM approximation grows diminishingly small. In addition, 
RISM drops all the diagrams derived from the PY approximation for h ( 1 2 )  involving 
sn/m-bonds which arise whenever the number of sites m > 3. Further discussion of this 
point follows below. 

(iii) Up to this point the approximations made by RISM (API, APII) have followed 
the familiar pattern of integral equation approximations, such as the PY approximation 
for hard spheres (cf the Introduction), in that the approximation has involved dropping 
diagrams from the exact expansion for hap(r ,  r’) (equation ( A 5 ) ) .  However, as pointed 
out by Chandler (1976),  the RISM approximation also involves, at each order in density, 
summing an infinite set of diagrams disallowed in the rigorous theory (APIII). Examples 
of such disallowed diagrams are shown in figure 5 of Chandler (1976).  Some explana- 
tion for the inclusion of the disallowed diagrams has been given by HazoumC (1978)  
who demonstrated that the n-site intramolecular correlation functions, 
sap.. ,,(xl, x2 , .  . . , x n ) ,  could be expanded as follows: 

A 

n/  m 

where S ,  is a sum of an infinite number of terms involving functions of the angles 
between the vectors la+,. Hence, to a first approximation, an sn lm function may be 
replaced by a chain of s ~ / ~  bonds: e.g., for n = 3, 
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Hence the diagram 

appearing in the exact cluster series (A5) for an m-site problem ( m  > 3) could be 
approximated by 

This diagram appears in the expansion of [ h a P ( r ) l X I S M  (equation (As)). HazoumC goes 
on to indicate that, as a consequence, RISM is applicable in an exact sense only to 
molecules with an infinite number of interaction sites, since there occur terms in 
[hOLlj ( r ) I R I S M  which, in the HazoumC interpretation, correspond to approximatioris for 
s"" where n and m are arbitrarily large. Such an explanation appears plausible only 
until it is noted that a diagram such as G2 corresponds to a sum of diagrams, one of 
which includes the site labelling 

Such a labelling does not arise in any rigorously allowed diagrams such as GI.  
Unfortunately, then, we cannot regard RISM as a formally 'correct' theory for molecules 
with an infinite number of sites which loses accuracy when applied to problems 
involving a finite number of sites. 

The cause of the present problem (APIII) can be traced to the inadequacy of the 
closure ( 8 b ) .  We do this by considering the form of c e P ( r )  in an exact theory as 
predicted by the RISM 02 equation (5). For simplicity, we consider the case of a two-site 
molecule at zero density, since this illustrates the key point regarding closure. At zero 
density, the RISM oz equation (5) yields 

where, for a two-site (m = 2) problem, o ( k )  can be written as 

Here ti) = is given by 



Auxiliury sites in RISM 1511 

Inverting (A13) and expanding o ( k ) - l  in powers of w, one obtains for c l l (k )  

c l l ( k )  = ( I +  W 2 +  W 4 + .  . . ) h l l ( i  + w 2 + W 4 + .  . .) 
- (w + w + w + . . .)hzt( 1 + w2 c w 4  + . . .) 
- ( i+-w2+-w4+.  . . jh l2(w+-w3+-w5+.  . .) 
+ (  w + w 3 + w s +  ...) h**(w+w3+W5+.  , *j ,  (A161 

By considering the ISF (exact) expansions for hap at zero density, and substituting these 
into (A16), we obtain an expansion for cll(r)  which contains an infinite class of 
diagrams. The subtracted terms ensure the removal of diagrams having only a single 
path between the white circles, For example, consider the following diagrams; the 
origin of each diagram in (A16) is indicated-they arise from considering diagram in 
hap in the ISF (A5). 

Diagrams Origin in equutiorz (A16) 

--w ' h21' 1 

Ill' pl l )  

Hence the diagrams A and B, which incidentally are not present in the expansion for 
[ c l l ( r ) I R I s ~ ,  will not be present in the expansion for an exact cI1(r).  Consideration of 
further terms in (A16) leads to the conclusion that an expansion for the exact c I t ( r )  
would contain an infinite set of diagrams at order po and hence, by iteration through the 
RISM oz equation, at higher orders in density as well. 

The important point to note, however, is that in the exact theory the use of the exact 
expansion for c a p ( r ) ,  even though it contains an infinite number of diagrams at each 
order in density. will yield via the exact closure relationship between hap ( r )  and cap ( r )  
(i.e. the independent, exact closure to the RISM oz which at present is unknown) 
expansions for hap ( r )  containing a fin& number of terms at each order in density. Use 
of the RISM py-like closure (equations (A9) and ( A l l ) ) ,  however, causes the expansion 
for [ h a p ( r ) I R I S M  to have an infinite number of diagrams at each order in density. 

Hence it can be seen that the use of the RISM approximation for c e p ( r )  (and the 
implied closure relation to the RISM oz given in (A8)-(A12)) represents an approxima- 
tion having greater repercussions for molecular fluids than the similar PY approximation 
has for the atomic hard sphere fluid. It is very important, especially from the point of 
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view of the deficiencies of the RISM approximation noted in the Introduction, that more 
appropriate closures to the RISM oz be developed. From the failure of RISM to predict 
the parameters GI correctly (cf § l), it can be conjectured that, in some cases, cap( r )  will 
be long-ranged. Certainly one aspect of the RISM closure to the RISM oz which will 
certainly require attention in any improved closure is that, at present, the closure relates 
cap to y a P ( r )  only; obviously there should be some relationship between cap( r )  and the 
y-functions for other site pairs, just as there is in the RISM oz itself. 
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